师资队伍

潘思宁 助理教授

E-mail:psn@tsinghua.edu.cn

通信地址:北京市清华大学集成电路学院2413,邮编100084

潘思宁,清华大学集成电路学院助理教授,博士生导师。2013年本科毕业于清华大学电子工程系,获学士学位,2016/2021年在荷兰代尔夫特理工大学微电子系获硕士/博士学位(均获荣誉学位),2021年至2022年在荷兰代尔夫特理工大学从事博士后研究,20224月全职回国加入清华大学集成电路学院,任教研系列助理教授。主要从事传感器读出电路、CMOS基准源、存算一体电路等模拟/混合信号集成电路设计研究。在芯片设计顶级会议ISSCC及顶级期刊JSSC发表论文共27篇,其中一作/通讯14篇,Springer出版专著一本《Resistor-based temperature sensors in CMOS technology》,专著章节两章。曾获2020SSCS博士生成就奖,2019ADI杰出学生设计者奖等。目前担任亚洲固态电路会议(ASSCC)技术委员会成员。

招生/招聘信息:本课题组每年招收2名左右博士/硕士研究生,常年招聘模拟/混合信号电路设计方向博士后,同时也非常欢迎感兴趣的本科生参与科研工作。详情请附上简历咨询psn@tsinghua.edu.cn


代表性论著:

期刊(JSSC

1. S. Pan, Y. Cheng, G. Wu, Z. Wang, K. A. A. Makinwa, H. Wu, "A 0.028mm2 32MHz RC Frequency Reference with an Inaccuracy of ±900ppm from -40°C to 125°C and ±1600ppm After Accelerated Aging" IEEE J. Solid-State Circuits. In press.

2. N. G. Toth, Z. Tang, T. Someya, S. Pan and K. A. A. Makinwa, "A PNP-Based Temperature Sensor With Continuous-Time Readout and ±0.1°C (3σ) Inaccuracy From − 55°C to 125°C," IEEE J. Solid-State Circuits. Early access.

3. S. Pan, X. An, Z. Yu, H. Jiang and K. A. A. Makinwa, "Compact RC Frequency References based on a Versatile Temperature Compensation Scheme," IEEE J. Solid-State Circuits. vol. 58, no. 12, pp. 3450-3458, Dec. 2023.

4. Z. Tang, S. Pan, M. Grubor and K. A. A. Makinwa, "A Sub-1V Capacitively-Biased BJT-Based Temperature Sensor with an Inaccuracy of ±0.15°C (3σ) from -55°C to 125°C," IEEE J. Solid-State Circuits. vol. 58, no. 12, pp. 3433-3441, Dec. 2023.

5. A. C. de Oliveira, S. Pan, R. J. Wiegerink and K. A. A. Makinwa, "A MEMS Coriolis-Based Mass-Flow-to-Digital Converter for Low Flow Rate Sensing," IEEE J. Solid-State Circuits. vol. 57, no. 12, pp. 3681-3692, Dec. 2022.

6. Ç. Gürleyük, S. Pan and K. A. A. Makinwa, "A 16 MHz CMOS RC Frequency Reference With ±90 ppm Inaccuracy From 45°C to 85°C," IEEE J. Solid-State Circuits. vol. 57, no. 8, pp. 2429-2437, Aug. 2022.

7. S. Pan, J. A. Angevare and K. A. A. Makinwa, "A Self-Calibrated Hybrid Thermal-Diffusivity/Resistor-Based Temperature Sensor," IEEE J. Solid-State Circuits. vol. 56, no. 12, pp. 3551-3559, Dec. 2021.

8. S. Pan and K. A. A. Makinwa, "A 10fJ·K2 Wheatstone Bridge Temperature Sensor with a Tail-Resistor-Linearized OTA," IEEE J. Solid-State Circuits, IEEE J. Solid-State Circuits, vol 56, no. 2, pp. 501-510, Feb 2021.

9. S. Pan and K. A. A. Makinwa, "A 0.25 mm2 Resistor-based Temperature Sensor with an Inaccuracy of 0.12°C (3σ) from 55°C to 125°C," IEEE J. Solid-State Circuits, vol 53, no. 12, pp. 3347-3355, Dec 2018.

10. Ç. Gürleyük, L. Pedala, S. Pan, F. Sebastiano, and K. A. A. Makinwa, "A CMOS Dual-RC Frequency Reference with ±200 ppm Inaccuracy from 45°C to 85°C," IEEE J. Solid-State Circuits, vol 53, no. 12, pp. 3386-3395, Dec 2018.

11. S. Pan, Y. Luo, S. H. Shalmany and K. A. A. Makinwa, "A Resistor-based Temperature Sensor with a 0.13 pJ·K² Resolution FoM," IEEE J. Solid-State Circuits. vol. 53, no. 1, pp. 164-173, Jan. 2018.


会议(ISSCC

1. S. Pan, X. Zhang, B. Zheng, Y. Cheng, H. Jiang and H. Wu, "A 143dB Dynamic Range 119dB CMRR Capacitance-to-Digital Converter for High-Resolution Floating-Target Displacement Sensing", in IEEE ISSCC Dig. Tech. Papers, Feb. 2025, in press.

2. P. Wang*, M. Wang*, G. Dai, Y. Cao, S. Pan, Y. Zhang, (*Equally-Credited Authors) "A 0.36nW, 820μm2, 32kHz Conduction-Angle-Adaptive Crystal Oscillator in 28nm CMOS for Real-Time Clock Applications", in IEEE ISSCC Dig. Tech. Papers, Feb. 2025, in press.

3. F. J. van Mourik, S. Pan, K. M. Dowling, K. A. Makinwa, " A Voltage-Biased CMOS Hall Sensor with 1.0μT (3σ) Offset and a 60nT/√Hz Noise-Floor", in IEEE ISSCC Dig. Tech. Papers, Feb. 2025, in press.

4. S. Pan, Y. Cheng, G. Wu, Z. Wang, K. A. A. Makinwa and H. Wu, "A 0.028mm2 32MHz RC Frequency Reference in 0.18μm CMOS with ±900ppm Inaccuracy from −40°C to 125°C and ±1600ppm Inaccuracy After Accelerated Aging", in IEEE ISSCC Dig. Tech. Papers, Feb. 2024, pp. 56-58.

5. X. An*, S. Pan*, H. Jiang and K. A. A Makinwa, (*Equally-Credited Authors) "A 0.01mm2 10MHz RC Frequency Reference with a 1-Point On-Chip-Trimmed Inaccuracy of ±0.28% from -45°C to 125°C in 0.18μm CMOS" in IEEE ISSCC Dig. Tech. Papers, Feb. 2023, pp. 60-61.

6. Z. Tang, S. Pan and K. A. A Makinwa, "A Sub-1V 810nW Capacitively-Biased BJT-Based Temperature Sensor with an Inaccuracy of ±0.15°C (3σ) from -55°C to 125°C, " in IEEE ISSCC Dig. Tech. Papers, Feb. 2023, pp. 354-355.

7. N. Toth*, T. Someya, Z. Tang, S. Pan* and K. A. A Makinwa, (*Equally-Credited Authors) " A BJT-Based Temperature Sensor with ±0.1°C (3σ) Inaccuracy from -55°C to 125°C and a 0.85pJK2 Resolution FoM Using Continuous-Time Readout," in IEEE ISSCC Dig. Tech. Papers, Feb. 2023, pp. 358-359.

8. A. C. de Oliveira, S. Pan and K. A. A Makinwa, "A MEMS Coriolis-Based Mass-Flow-to-Digital Converter with 100μg/h/√Hz Noise Floor and Zero Stability of ±0.35mg/h," in IEEE ISSCC Dig. Tech. Papers, Feb. 2022, pp. 68-69.

9. S. Pan, J. A. Angevare and K.A.A Makinwa, "A Hybrid Thermal-Diffusivity/Resistor-based Temperature Sensor with a Self-Calibrated Inaccuracy of 0.25°C (3σ) from 55°C to 125°C," in IEEE ISSCC Dig. Tech. Papers, in IEEE ISSCC Dig. Tech. Papers, Feb. 2021, pp. 78-80.

10. H. Jiang, S. Pan, Ç. Gürleyük and K. A. A. Makinwa, "A 0.14mm2 16MHz CMOS RC Frequency Reference with a 1-point Trimmed Inaccuracy of ±400ppm from 45°C to 85°C," in IEEE ISSCC Dig. Tech. Papers, Feb. 2021, pp. 436-438.

11. S. Pan and K. A. A. Makinwa, " A CMOS Resistor-based Temperature Sensor with a 10fJK2 Resolution FoM and 0.4°C (3σ) Inaccuracy from 55°C to 125°C after a 1-point Trim," in IEEE ISSCC Dig. Tech. Papers, Feb. 2020, pp. 68-69.

12. Ç. Gürleyük, S. Pan, and K. A. A. Makinwa, "A 16MHz CMOS RC Frequency Reference with ±400ppm Inaccuracy from 45°C to 85°C after Digital Temperature Compensation," in IEEE ISSCC Dig. Tech. Papers, Feb. 2020, pp. 64-65.

13. S. Pan, Ç. Gürleyük, M. F. Pimenta and K. A. A. Makinwa, "A 0.12mm2 Wien Bridge Temperature Sensor with a 0.1°C (3σ) Inaccuracy from 40°C to 180°C," in IEEE ISSCC Dig. Tech. Papers, Feb. 2019, pp. 184-186.

14. S. Pan and K. A. A. Makinwa, "A Wheatstone Bridge Temperature Sensor with a Resolution FoM of 20fJ·K2," in IEEE ISSCC Dig. Tech. Papers, Feb. 2019, pp. 186-188.

15. S. Pan and K. A. A. Makinwa, "A 0.25mm2 Resistor-based Temperature Sensor with an Inaccuracy of 0.12°C (3σ) from 55°C to 125°C and a Resolution FoM of 32fJ·K2," in IEEE ISSCC Dig. Tech. Papers, Feb. 2018, pp. 320-322.

16. S. Pan, Y. Luo, S. H. Shalmany and K. A. A. Makinwa, "A Resistor-based Temperature Sensor with a 0.13pJ·K2 Resolution FOM," in IEEE ISSCC Dig. Tech. Papers, Feb. 2017, pp. 158-159.


专著

1. S. Pan and K. A. A. Makinwa, Resistor-based temperature sensors in CMOS technology, Springer, Cham, 2022.